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Abstract 5 

This paper presents the approach used to assess the global landslide hazard in the derivation of the 

Global Infrastructure Resilience Index (GIRI) for the Biennial Global Infrastructure Resilience Report 

of the Coalition for Disaster Resilient Infrastructure (CDRI). The methodology involves integrating 

landslide susceptibility and earthquake characteristics or rainfall data to determine, on a global scale, 

the probability of earthquake- and precipitation-induced landslides. The latter is assessed for both 10 

present and future climate conditions. The susceptibility map categorizes different terrains into five 

susceptibility classes, considering factors such as slope, vegetation (land use), lithology, and soil 

moisture, using global datasets. Rainfall information is gathered from the W5E5 dataset for the time 

span of 1979-2016 and the IPSL-CM6A-LR climate model from the ISIMIP3b dataset, covering the 

SSP126 and SSP585 scenarios for 2061-2100. To evaluate the potential for rainfall-triggered 15 

landslides, 24-hour rainfall intensities are utilized to classify areas into five rainfall hazard classes. 

The potential for earthquake-induced landslides is assessed based on the peak ground acceleration 

(PGA) of the earthquake event (scenario) at a given location and the susceptibility index of the terrain 

at that location. The landslide susceptibility map(s) and rainfall data or earthquake PGA are combined 

to produce a hazard matrix. The result is a probabilistic hazard map that can be used for scenario-20 

based assessment of global landslide risk to critical infrastructure, with a resolution of three arc 

seconds (approximately 90 metres at the equator) for the whole globe. 
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1. Introduction 

Rainfall- and earthquake-induced landslides represent an important hazard in mountainous regions 25 

worldwide. Landslides commonly impact the functioning of infrastructure assets such as roads and 

railways and occasionally damage buildings or result in fatalities (Petley 2012; Froude and Petley 

2018). Precipitation-induced landslides are commonly triggered by rather short and intense rainfall 

events (Caine 1980; Guzzetti et al. 2008). As a consequence of climate change, the frequency and 

intensity of severe rainfall events that usually trigger landslides is expected to increase in some 30 

regions (Gariano and Guzzetti 2016). In addition, due to societal changes, tourism development, and 

the increased use of transport networks in mountain areas, the exposure of communities to landslides 

is growing in many parts of the world. Thus, understanding how the landslide hazard will change in 
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future is key to planning mitigation measures along linear infrastructure and reducing the risk to the 

population. Earthquakes are another common triggering mechanism of landslides (e.g. Keefer 1984). 35 

Landslides triggered by strong earthquakes in mountainous areas often have catastrophic 

consequences. For example, about 25% of the 87,000 casualties (69,000 confirmed killed and 18,000 

missing) caused by Wenchuan Earthquake of 12 May 2008 were due to the landslides triggered by 

that event (Zhang et al. 2014). 

Within the Natural Disaster Hotspots project (Dilley 2005; Nadim et al. 2006), landslide hazard maps 40 

were developed using global topography, lithology, earthquake and climate datasets to identify the 

most exposed countries. Subsequently, this approach was refined and improved and has been employed 

in various global (Nadim et al. 2013) and continental (Jaedicke et al. 2014) studies including the Global 

Assessment Reports (GAR) of UNDRR (then UNISDR). 

The aim of this paper is to present the components of the landslide hazard model developed for the 45 

Flagship Report of The Coalition for Disaster Resilient Infrastructure (CDRI) to evaluate the global 

risk posed by earthquake- and rainfall-induced landslides to road and railway infrastructure, the latter 

both for the present climate regime and for future climate scenarios. The model presented in this paper 

(herein referred to as the GIRI landslide model) has a resolution that is about 10 times greater than the 

GAR model, and it can be used for the assessment of landslide probability for specific rainfall and 50 

earthquake scenarios. 

2. The GIRI landslide model 

The GIRI model is based on the model that was originally developed by (Nadim et al. 2006) in the 

project "Natural disaster hotspots – a global risk report" for the World Bank (Dilley 2005) to identify 

the global landslide hazard and risk "hotspots". Its inputs are (i) susceptibility information, and (ii) 55 

gridded information of different scenarios for each of the landslide-triggering factors, including 

rainfall and earthquake. The output consists of global scenario-based landslide hazard maps that can 

be used to evaluate the risk to linear infrastructure. Figure 1 shows a general flowchart of the GIRI 

landslide model.  

In the following sections, the components of the GIRI landslide model are explained in more detail.  60 
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Figure 1 Flowchart of the landslide hazard model and risk assessment for critical infrastructure. 

3. GIRI landslide susceptibility 

In the GIRI landslide hazard model, the susceptibility map is used to distinguish landslide-prone areas. 

The susceptibility map has been derived by combining the information contained in global open-65 

source datasets describing the topography (slope angle), lithology, vegetation and soil moisture 

information (Table 1). It classifies the globe into five landslide susceptibility categories corresponding 

to "Very Low", "Low", "Moderate", "High", and "Very High" susceptibility. Additionally, global 

landslide database for rainfall-induced landslides has been employed to visually analyse the outputs of 

the GIRI landslide susceptibility map for rainfall-induced landslides. 70 

In the following subsections the input datasets that were uses for the computation of susceptibility and 

the method applied to obtain the susceptibility factors are introduced first. Then the method to 

compute the overall landslide susceptibility is explained in more detail. 

Table 1 Datasets used in the GIRI landslide susceptibility model for rainfall-induced Landslides. 

Type Type of landslide Source Coverage Resolution 

Slope Rainfall-induced 

Earthquake-induced 

Derived from MERIT-

Hydro DEM 

Global 0,00083 ≈ 90 

m 

Lithology Rainfall-induced Global Lithological Map Global Polygon data 
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Earthquake-induced database (GLiM) 

Soil moisture Rainfall-induced 

 

Current climate: W5E5 

Future climate: IPSL-

CM6A-LR model from the 

ISIMIP3b data set SSP126 

and SSP585 scenarios 

Global 0.5° 

Earthquake-induced ERA5 soil moisture 

climatology 

Global 0.25° 

Land cover Rainfall-induced 

Earthquake-induced 

ICDR Land Cover 2020 Global 0.002778° 

Landslide 

database 

Rainfall-induced COLOR - NASA Global Point data  

 75 

3.1.  From input data to susceptibility factors 

Slope factor 

The slope calculation was done using the open-access software Whitebox Geospatial Analysis Tools 

(Whitebox GAT) developed by Lindsay (2016). The Slope tool uses the 3 × 3 polynomial fitting 

method for equal angle grids, as described by Florinsky (2016) and Florinsky (2017). The calculations 80 

are based on the spaceborne MERIT digital elevation model (DEM) by (Yamazaki et al. 2017), in a 

geographic coordinate system (WGS84). The pixels with DEM data are in angular units with a 3" 

resolution (~90 metres at the equator). The data are available as 5-degree × 5-degree tiles (6000 pixels 

× 6000 pixels), compressed into 30-degree × 30-degree packages. 

Due to the large number of files (1150) and data size, the process was carried out in a series of 85 

(parallelised) Python scripts. These scripts are implemented by using Multiprocessing. It is an 

iterative procedure, that is tailored towards the data structure and the parallelization of the calculations, 

while the actual processing of each tile is implemented as a subclass. 

To avoid edge contamination in the slope analysis, the DEM was first pre-processed (mosaicked) into 

a single global raster containing all files using the GDAL Virtual Format. From this dataset, GDAL 90 

Translate was used to extract a new set of buffered tiles, using 5 pixels as the buffer size. The buffer 

size is the number of pixels multiplied by the pixel size (3 arc seconds) measured in degrees. 

The first step calculates the slope and stores the output in the same structure as the original DEM. The 

second step reads and transforms all layers (vegetation, lithology, moisture, and slope) into tiles with 

the same resolution as the original DEM. The third step loads all the layers from the previous and 95 

transforms layers into susceptibility factors and calculates susceptibility. The fourth step reclassifies 
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the susceptibility into susceptibility classes (1 to 5). The output is structured according to the same 

groups and tiles as the original DEM. 

The slope data were then reclassified by an expert using information on landslide frequency 

distributions in the world. Cells were distributed in the six different susceptibility categories (0 – 5) 100 

according to their susceptibility degree as presented in Table 1. Intuitively the greater the slope angle 

the more susceptible the terrain is. However, since most soils have internal friction angles smaller 

than 36°, slopes steeper than 36° are not likely to be covered by sediments. The sediments on the 

slope have most likely already been removed in the past, and the slopes steeper than 50° might now 

consist primarily of hard rock. To account for this, the susceptibility factor for very steep slopes 105 

(greater than 36°) has been set to decrease. It is important to notice that for slopes which angle is less 

than 6° (i.e. for flat or nearly flat areas), the slope factor has been set equal to zero because the 

resulting landslide hazard is negligible even if all the other factors are favourable.  

Table 2 Susceptibility index assigned to each slope class. 

Range of slopes angle (unit: 1/100 degrees) Classification Sr 

0000 – 0600 Very low 0 

0601 – 1200 Low 1 

1201 – 1800 Moderate 2 

1801 – 2400 Medium 3 

2401 – 3000 High 4 

3001 – 3600 Very high 5 

3601 – 4000 Probably stiff soil 4 

4001 - 4400 Probably rock 3 

4401 - 5000 Probably hard rock 2 

> 5000 Stable hard rock 1 

No Data No Data No Data 

 110 

Lithology factor  
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Soil properties play a key role in determining slope stability. Ideally, detailed geotechnical 

information on the soil cover should be used to determine if the conditions for landslide initiation are 

met. However, at the global scale, only a general lithological description of the various locations is 

available.  Therefore, assessing the terrain susceptibility using the information available about 115 

sediment strength at the global scale has been challenging. 

In this study, we have utilized the information contained in the Global Lithological Map database 

(referred to as GLiM - Hartmann and Moosdorf, 2012). GLiM was constructed by compiling existing 

regional geological maps which were translated into lithological information using relevant regional 

literature. The database encompasses 1,235,400 polygons and employs a three-layer classification 120 

system for lithology. The first level contains 16 lithological classes that are comparable to previously 

applied definitions in global lithological maps. The two additional levels consist of 12 and 14 

subclasses, respectively, offering more detailed descriptions of specific rock attributes.  

For the purpose of our work, we have rasterized the GLiM to match the resolution of the slope map. 

The information of the lithology classes and subclasses were used to reclassify the world into three 125 

susceptibility classes (1 – 3) representing lithologies with low, moderate and high relevance for 

landslide susceptibility.  

Soil moisture factor 

Soil moisture plays a relevant role in slope stability. As water infiltrates into the soil, pore pressures 

increase and shear strength decreases eventually leading to failure if the soil strength is low and the 130 

slope is steep. In the GIRI landslide susceptibility assessment for rainfall-induced landslides, rainfall 

data with a spatial resolution of 0.5° has been used as a proxy to assess the soil moisture conditioning 

factors. This method has allowed to obtain susceptibility maps for different future climate scenarios. 

For the period 1979-2016 the W5E5 precipitation estimates (Lange 2019) have been employed. More 

specifically the daily product that contains the sum of rainfall and snow water equivalent has been 135 

employed to obtain the mean value of the 38 rainfall maximum monthly cumulates.  

For the periods 2061-2100 the IPSL-CM6A-LR model from the ISIMIP3b data set (Frieler et al. 2017) 

SSP126 and SSP585 scenarios have been employed to obtain the mean of the average monthly 

precipitation.  

The distribution of the mean year maximum monthly rainfall in current climate conditions has been 140 

investigated (Figure 2a). Wetter areas are generally more susceptible to rainfall-induced landslides 

than drier areas. This criterion has been considered to classify the mean year maximum monthly 

rainfall into five classes (Table 3), and assign a soil moisture susceptibility factor (Sp). 
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Table 3 Soil moisture susceptibility factor assigned for each of the mean year maximum monthly rainfall categories. 145 

Mean Year maximum monthly rainfall (MYMMR) (mm) Sp 

≤ 125 1 

125 < MYMMR ≤ 250 2 

250 < MYMMR ≤ 500 3 

500 < MYMMR ≤ 1000 4 

MYMMR > 1000 5 

 

 

Figure 2 Mean year maximum monthly precipitation in (a) current climate conditions and in the period 2061-2100 with the 
(b) SSP126 and SSP585 climate change scenarios. 
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Figure 2 shows area affected by a given mean year monthly rainfall amounts for the current climate, 150 

and the two analysed future climate change scenarios (Figures 2b, and 2c). As it can be observed, it is 

expected that in future, the area affected by high mean year maximum monthly rainfall amounts is 

going to slightly increase. This observation might seem counterintuitive but can be explained by 

changes in the spatial distribution of the rainfall.  

In the future, some regions will experience higher rainfall accumulations compared to present 155 

conditions, while other areas might receive less rainfall. As a result, the overall effect is a modest 

increase in the mean year maximum monthly rainfall across a larger geographic area. 

For the case of earthquake-induced landslides, the soil moisture information in the Essential Climate 

Variables for assessment of climate variability from 1979 to present dataset (Hersbach et al. 2018) 

was employed.  This dataset is based on the provisional data from ECMWF's ERA5 data. Soil 160 

moisture information consists of the monthly volumetric water content climatology obtained from 

satellite observations in the top 7 cm of soil with a spatial resolution of 0.25°. For this work, the mean 

soil moisture in each of the pixels has been used.   

Table 4 Soil moisture susceptibility factor assigned for each of the volumetric water content categories. 

Volumetric water content (VWC) (m3/m3) Sp 

≤ 0.16 1 

0.16 < VWC ≤ 0.36 2 

0.36 < VWC ≤ 1 3 

 165 

Vegetation factor 

Vegetation can play a significant role in slope stability by providing additional cohesion to the soil 

and reducing soil moisture by means of evapotranspiration. Additionally, being able to distinguish 

between areas with vegetation cover and unvegetated areas can provide an indication of the soil 

availability. The C3S Land Cover v2.1 global ICDR Land Cover map for 2000 has been used 170 

(Copernicus Climate Change Service, Climate Data Store 2019; Defourny et al. 2021) in this study. 

The land cover map has a regular latitude-longitude grid with a 0.002778° resolution (approximately 

300 m at the equator). Each pixel indicates a categorical land cover class defined using UN Land 

Cover Classification System classifiers.  

Here the original 38 categories from the land cover map have been re-classified using expert criteria 175 

and information contained in relevant literature into five classes with relation to non-resistance to 

landslides.  
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Table 5 Susceptibility factor for the land cover classes. 

Land cover class Sv 

Bare areas 5 

Sparse vegetation 4 

Grassland 5 

Evergreen shrubs 4 

Shrubs 3 

Close Forest 2 

Open Forest 3 

Agriculture 5 

Agriculture with herbaceous cover 4 

Agriculture combined with shrubs and forest 3 

Water bodies 0 

Permanent Ice 1 

Urban areas 1 

 

3.2. Method 180 

The method to obtain landslide susceptibility is similar to that of Nadim et al. (2006), Nadim et al. 

(2013), and Jaedicke et al. (2014). Landslide susceptibility is computed as follows: 

𝑆𝑆 = ∏ 𝑤𝑤𝑖𝑖 ∙ 𝑓𝑓(𝑆𝑆𝑖𝑖𝑖𝑖 )   (1) 

Where 𝑆𝑆𝑖𝑖 are the slope, lithology, vegetation and mean of the annual monthly rainfall factors, and 𝑤𝑤𝑖𝑖 

are the weights of the slope, lithology, vegetation and mean of the annual monthly rainfall factors 185 

respectively. The weights of different susceptibility factors were calibrated to the information 

available in landslide inventories and physical processes. 

4. Assessment of the landslide triggering conditions 

4.1. Rainfall triggering conditions 

Shallow slides and debris flows are generally triggered by severe short-duration high-intensity rainfall 190 

events. Rainfall intensity-duration (I-D) thresholds are commonly used in regional-scale landslide 

early warning systems to assess the hazard represented by a given rainfall situation. To determine the 

magnitude of a rainfall situation the GIRI model uses 24 h rainfall data to assess the return period of a 

given rainfall event.  
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To determine the rainfall triggering potential the 24 h rainfall product from the W5E5 dataset (Lange 195 

2019) has been employed to normalize the 24 h rainfall intensity of a given rainfall scenario as 

follows:  

𝐼𝐼24ℎ−𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 = 𝐼𝐼24ℎ−𝜇𝜇𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚
𝜎𝜎𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚

    (2) 

Where 𝐼𝐼24ℎ represents the rainfall event 24 h rainfall intensity, 𝜇𝜇𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚  is the mean value of maximum 

annual 24-hr rainfall intensity at location of interest, and 𝜎𝜎𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚  represents the standard deviation of 200 

maximum annual 24-hr rainfall intensity at location of interest. 

The 24h duration 5 years, 25 years, 200 years, and 1000 years return periods have been selected as 

thresholds to distinguish between five rainfall hazard classes. Table 5 shows the correspondence 

between 𝐼𝐼24ℎ−𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛  and rainfall return period Assuming a Gumbel distribution for the maximum 

annual daily rainfall at a given location. 205 

Table 6 Correspondence between 𝐼𝐼24ℎ−𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 and return pe obtained of rainfall 24h intensity. 

I24hr-normalised Return period (years) 

0.70 4.9 

0.72 5 

1.13 10 

1.86 20 

2.0 23.7 

2.6 50 

3.1 100 

3.7 200 

4.4 500 

4.9 1000 

5.0 1087 

  

It will take a long time (centuries) for the terrain to adapt to a new climate regime. Therefore, for 

future climate scenarios, the normalisation of the triggering rainfall should be done with respect the 

values of  𝜇𝜇𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚  and 𝜎𝜎𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚  obtained for today's climate. This approach will capture the change in the 210 

characteristics of the triggering rainfall in the future. 

4.2. Earthquake triggering conditions 

The model for earthquake-triggered landslide hazard developed for the GAR reports (Nadim et al. 

2013) used the peak ground acceleration (PGA) from the Global Seismic Hazard Program, GSHAP 
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(Giardini et al. 2000; Giardini et al. 2003). The 475-year return period (10% probability of 215 

exceedance in 50 years) was employed in that model to determine the earthquake triggering potential. 

Based on the calibrations done previously for the GAR model, for the GIRI model, PGA values of 

0.05g, 0,15g, 0.25g, 0.35g and 0.45g were selected as thresholds to define five seismic hazard classes. 

We have considered that earthquakes with a PGA smaller than 0.05g have a negligible probability of 

triggering a landslide. 220 

5. Scenario-based landslide hazard on roads and railways 

The "landslide hazard index", i.e., the probability of landslide occurrence for a specific triggering 

event, is derived from the combination of susceptibility index and the rainfall triggering conditions, or 

the susceptibility index and the earthquake triggering conditions. The combination of the 

susceptibility and the rainfall triggering conditions is done according to the hazard matrix in Figure 3.  225 

 

Figure 3 Hazard matrix used to determine the probability of occurrence of a significant rainfall-induced landslide that 
impacts the 1km stretch of the road or railway as function of 𝐼𝐼24ℎ−𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 of the precipitation scenario at that location and the 
Susceptibility Category. 

The global (rainfall-triggered) landslide hazard index map has been integrated over rainfall events 230 

with different return periods to “translate” the combination of landslide hazard category and return 

period of the daily rainfall into the probability of landslide occurrence within an area. 

The probabilities of each assigned to each hazard class have been calibrated such that the integration 

over all the return periods for the whole globe results in an annual number of significant rainfall-

induced landslides (~400,000 globally) that is consistent with the data presented in the Global 235 

Landslide Hazard Map (The World Bank 2020). 

Similarly, for the case of earthquake-induced landslides, the combination of the susceptibility and the 

earthquake triggering conditions is done according to the hazard matrix in Figure 4. If PGA is less 

than 0.05g, then the probability of triggering an earthquake-induced landslide is negligible even for 
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high susceptibility categories. The probabilities of each hazard class have been calibrated such that the 240 

total number of significant landslides triggered by earthquakes is consistent with the approximate 

130,000 landslides happening globally each year, as indicated by the World Bank report (The World 

Bank 2020).  

 

Figure 4 Probability of occurrence of a significant earthquake-induced landslide that impacts the 1km stretch of the road or 245 
railway in question as function of PGA of the earthquake scenario at that location and the Susceptibility Category. 

To assess hazard possessed by landslides on linear infrastructure we have used a unit of 1km length 

along the road or railway and a 300 m buffer on each side of the road or railway stretch (Figure 5). 

The pixel with highest susceptibility for earthquake-induced landslide in the 1km × 600m unit has 

been used to determine the probability of a landslide impacting the 1 km stretch of the road or railway 250 

in question (indicated in Figure 3 and Figure 4). 

 

PGA (g) 
Susceptibility category 

Susc. 1 Susc. 2 Susc. 3 Susc. 4 Susc. 5 

0.05g ≤ PGA < 0.15g ~ 0 ~ 0 ~ 0 0.1% 0.5% 

0.15g ≤ PGA < 0.25g ~ 0 ~ 0 0.1% 0.5% 1% 

0.25g ≤ PGA < 0.35g ~ 0 0.1% 0.5% 1% 5% 

0.35g ≤ PGA < 0.45g ~ 0 0.5% 1% 5% 10% 

PGA ≥ 0.45g ~ 0 1% 5% 10% 40% 
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Figure 5 Schematic of buffer zones around a 1km stretch of road or railway, and assigning the susceptibility index. Each box 
in the figure represents a pixel and the number shown in the box represents the landslide susceptibility class. 255 

6. Results 

Figure 6 shows the susceptibility map for rainfall-induced landslides obtained with the GIRI model 

for current climate conditions. As expected, the areas exhibiting a higher susceptibility to landslides 

coincide rather well with mountainous areas that have a relatively humid climate. This fact can be 

explained because the slope factor plays a relevant role in susceptibility assessment.  260 

 

Figure 6 Susceptibility to rainfall-induced landslides obtained with the GIRI model for current climate conditions. 
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Evaluating the performance of landslide susceptibility maps at a global scale is challenging because of 

the limitations of global landslides databases. Here, the rainfall-induced landslides in the global 

NASA COLOR database (Juang et al. 2019), and from selected national (Ekker et al. 2013) and 265 

regional (Palau et al. 2022) inventories have been used for the visual inspection of our results for 

current climatic conditions. Generally, the location of the landslides in the coincide rather well with 

high susceptibility areas. Figure 7 shows a zoom over south-east Asia. It can be observed that the 

areas with higher susceptibility coincide with the Himalayas, the Western Ghats, and the Zagros 

mountainous areas where most landslides have been reported. 270 

 

Figure 7 Susceptibility to rainfall-induced landslides obtained with the GIRI model for current climate conditions over the 
South-East of Asia. The Black points represent the Landslides in the NASA COLOR database (Kirschbaum et al. 2010; 
Juang et al. 2019). 

Landslide susceptibility maps for the present and the two analysed future climate change scenarios 275 

(Figures 8a and 8b) are generally similar. However, some areas, such as the northwest of America and 

the southeast of Asia, exhibit a slight increase in susceptibility. This increase is larger for the SSP585 

scenario than for the SSP126 scenario (Figures 8a and 8b). On the other hand, our model predicts that 

landslide susceptibility will decrease slightly in some other areas, like Central America and the 

Iberian Peninsula. However, one must remember that this change in susceptibility is only due to the 280 

change in the average long-term precipitation regime. It could be the case that landslide hazard 

changes more dramatically if the frequency of high-intensity rainfall events decreases or increases. 
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Figure 8 (a) Difference between the susceptibility map for rainfall-induced landslides with today's climate and the 285 
susceptibility map for the future climate assuming an SSP126 scenario. (b) Difference between the susceptibility map for 
today's climate and future climate assuming an SSP585 scenario. 

Similarly, for the case of earthquake-induced landslides the areas that exhibit a high susceptibility 

generally coincide with the locations of mountainous areas. When compared to the susceptibility map 

for current climate conditions, it can be noticed that the earthquake-induced landslides susceptibility 290 

map displays a higher susceptibility in the south-east Asia and western America, and a lower 

susceptibility in western Norway. This can be explained because the soil moisture factor has a smaller 

weight in the model for earthquake-induced landslides. Thus, slope angle is more relevant in 

determining earthquake-induced landslide susceptibility.  
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 295 

Figure 9 Susceptibility to earthquake-induced landslides obtained with the GIRI model. 

 

7. Discussion and conclusions 

A new model to probabilistically assess landslide hazard at a global scale has been developed. The 

GIRI landslide hazard model is used in the Flagship Report of The Coalition for Disaster Resilient 300 

Infrastructure (CDRI) to evaluate the global risk posed by landslides to road and railway 

infrastructure, both for the present climate regime and for future climate scenarios. 

The GIRI landslide hazard model uses information on the terrain slope angle, lithology, soil moisture 

and vegetation to obtain a susceptibility map. Then the susceptibility map can be combined with 

information on the rainfall or earthquake landslide triggering conditions to obtain a fully probabilistic 305 

hazard map or used in a scenario-based approach with Monte Carlo simulations to assess the risk to 

critical infrastructure (or to other elements at risk). 

The resolution of the GIRI landslide model is much higher than the resolution of the previous similar 

global models. This is mainly because more up-to-date datasets to describe the lithology, vegetation, 

soil moisture and the terrain slope angle have been employed. In past studies (Nadim et al. 2006; 310 

Nadim et al. 2013; Jaedicke et al. 2014) a DEM with a resolution of 30 arc second was used. Here we 

have applied a DEM with a resolution of 3 arc seconds, which corresponds to approximately 90m at 

the equator. This has allowed a better representation the slope angle over the world. 

Another significant difference with previous models is that for the case of rainfall-induced landslides, 

the mean of the year maximum monthly precipitation has been used as a proxy to account for soil 315 
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moisture preconditioning. This has allowed obtaining susceptibility maps for the current climate 

conditions, as well as for the future SSP126 and SSP585 climate change scenarios. 

The evaluation of the performance of landslide susceptibility maps has been challenging because of 

the limitations in global landslide inventories, which are rather incomplete. Generally, the areas that 

exhibit a higher susceptibility coincide rather well with mountainous areas where landslides have been 320 

reported in global and national landslide databases (Ekker et al. 2013; Juang et al. 2019; Palau et al. 

2022). 

The comparison of the susceptibility maps for rainfall-induced landslides obtained for the current 

climate conditions, and the susceptibility maps obtained for the SSP126 and SSP585 scenarios shows 

a slight increase of susceptibility in some areas that will be affected by larger rainfall amounts. 325 

Susceptibility will decrease slightly in other areas, like Central America and the Iberian Peninsula. 

The areas where susceptibility will change in future are larger for the SSP585 climate change scenario 

Than for the SSP126 scenario. It should be pointed out that the change in landslide susceptibility 

predicted by the GIRI is only due to modification in the prevailing long-term precipitation patterns. 

Land use changes can also affect susceptibility, and landslide hazard could undergo even more 330 

pronounced changes if the frequency of occurrence of intense rainfall events rises or falls in the future. 

In this study, the hazard due to rainfall-induced and earthquake-induced landslides were analysed 

separately. This decision was taken mainly because the susceptibility factors for the two triggering 

mechanisms might be different. Additionally, the risk (to human life) due to earthquake-induced 

landslides is often included in the earthquake risk, and one should avoid counting the same risk twice 335 

in a multi-hazard and multi-risk context. 

The rainfall triggering conditions are based on an extreme-value analysis of 1-day precipitation, as 

opposed to the extreme monthly precipitation used in the GAR model (Nadim et al. 2006; Nadim et al. 

2013). The earthquake triggering conditions are assessed in a scenario-based approach using the PGA 

of a simulated earthquake event at a given location. 340 

An important limitation of the GIRI landslide model is that it does not account for human-induced 

landslides. Such landslides generally have high economic consequences, such as road and railway 

closures, but rarely result in fatalities. Accounting for the human factor is not straightforward, as it 

depends on human decisions that are not easy to predict. In future, a population density factor could 

be introduced to account for the increased chance of having a landslide triggered by human activity in 345 

densely populated areas.   

The developed GIRI landslide hazard model enables the user to obtain an event-based landslide 

hazard over road and railways. The employed methodology in the GIRI model by combining 

susceptibility information and information on the triggering factors is very similar to the approach 
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used in regional-scale and global-scale landslide early warning systems (Kirschbaum et al. 2009; 350 

Krøgli et al. 2018; Palau et al. 2020). However, most of the regional and global-scale landslide early 

warning systems usually adopt a qualitative or fuzzy logic approach. The GIRI landslide model output 

is fully probabilistic hazard along linear infrastructures. This is relevant for risk assessment. 

The susceptibility maps and hazard outputs provided by the GIRI model should only be utilized to 

gain a general understanding of landslide susceptibility and hazard distribution in current and future 355 

climate conditions. Due to the limitations of the input parameters and the calibration of our model, the 

presented results cannot be applied to assess the landslide hazard at a regional scale, nor for urban 

planning.  

It is not straightforward to evaluate the vulnerability of road, railway and other components of a 

transportation infrastructure in our model. The intensity measure used for characterising landslides in 360 

physical vulnerability models is depth and/or velocity of sediments upon impact, neither of which are 

estimated in our model. Further work needs to be done in order to be able to quantify landslide 

magnitude at the scale of the analysis. 
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