References

Agee, J. K., Wright, C. S., Williamson, N., & Huff, M. H. (2002). Foliar moisture content of Pacific Northwest vegetation and its relation to wildland fire behavior. Forest Ecology and Management, 167(1-3), 57-66. 

 

Ambraseys, N. (2010). A note on transparency and loss of life arising from earthquakes. Journal of Seismology and Earthquake Engineering, 12(3), 83–88. https://www.sid.ir/en/journal/ViewPaper.aspx?id=213107 

 

Apostolakis, G. (1990). The concept of probability in safety assessments of technological systems. Science, 250(4986), 1359–1364. https://doi.org/10.1126/science.2255906 

 

Banimahd, S. A., & Khalili, D. (2013). Factors Influencing Markov Chains Predictability Characteristics, Utilizing SPI, RDI, EDI and SPEI Drought Indices in Different Climatic Zones. Water Resources Management, 27(11), 3911-3928. https://doi.org/10.1007/s11269-013-0387-z 

 

Bankoff, G., Frerks, G., & Hilhorst, D.J.M. (2004). Mapping Vulnerability: Disasters, Development and People. Earthscan: London. 

 

Barbat, A.H. and Cardona, O.D. 2003. Vulnerability and disaster risk indices from engineering perspective and holistic approach to consider hard and soft variables at urban level. Information and indicators program for disaster risk management. Universidad Nacional de Colombia, Manizales, Colombia. 

 

Barbat, A., Carreño, M.L., Cardona, O.D., & Marulanda, M. (2011). Evaluación holística del riesgo sísmico en zonas urbanas. Revista Internacional de Métodos Numéricos Para Cálculo y Diseño En Ingeniería, 27(1), 2–27. https://upcommons.upc.edu/handle/2117/77680 

 

Bates F.L. and Peacock W.G. 1992. ‘Measuring disaster impact on household living conditions: The domestic assets approach’, International Journal of Mass Emergencies and Disasters, Vol. 10(1): 133-160. 

 

Bernal. G., Cardona, O.D., Marulanda, M., Carreño, M. L. (2021). Dealing with Uncertainty using Fully Probabilistic Risk Assessment for Decision Making. Chapter 14 in: Eslamian, S., & Eslamian, F. (Eds): Handbook of Disaster Risk Reduction for Resilience. Springer Nature. In press. 

 

Bernal G., Salgado-Gálvez, M., Zuloaga, D., Tristanchi, J., González, D., Cardona, O. D. (2017). Integration of Probabilistic and Multi-Hazard Risk Assessment Within Urban Development Planning and Emergency Preparedness and Response: Application to Manizales, Colombia. Int J Disaster Risk Sci. DOI 10.1007/s13753-017-0135-8 

 

Bernal G., Cardona O.D., Marulanda, M.C., Carreño, M.L. (2019). On the Calculation of the Loss Exceedance Curve and Related Risk Metrics. Technical Note. INGENIAR. 

 

Berkes F., Colding J., and Folke C. 2003. ‘Introduction’ in Navigating Socialecological Systems: Building Resilience for Complexity and Change, edited by Berkes F., Colding J., Folke C., Cambridge University Press, Boston, USA. 

 

BID, 2021. Análisis y recomendaciones para la implementación efectiva de la gestión de riesgo de desastres en América Latina y el Caribe: Estudio a través del Índice de Gestión de Riesgo (IGR), Nota Técnica IDB-TN-2317, Banco Interamericano de Desarrollo. Washington, DC. 

 

Birkmann, J., Cardona, O.D., Carreño, M.L., Barbat, A.H., Pelling, M., Schneiderbauer, S., Kienberger, S., Keiler, M., Alexander, D., Zeil, P., & Welle, T. (2013). Framing vulnerability, risk and societal responses: The MOVE framework. Natural Hazards, 67(2), 193–211. https://doi.org/10.1007/s11069-013-0558-5 

 

BMVI, 2014. Bundeswasserstraßenkarte DBWK1000. https://www.wsv.de/service/karten_geoinformationen/bundeseinheitlich/pdf/DBWK1000_Generaldirektion_2014.pdf Boin, A., and McConnell, A. 2007. ‘Preparing for critical infrastructure breakdowns: the limits of crisis management and the need for resilience’, Journal of Contingencies and Crisis Management 15(1): 50–59. 

 

Bonanno, G.A., Galea, S., Bucciarelli, A., and Vlahov, D. 2006. ‘Psychological Resilience after Disaster: New York City in the Aftermath of the September 11th Terrorist Attack’, Psychological Science 17(3): 181–186. 

 

Burton, C., Khazai, B., & Silva, V. (2014). Social Vulnerability And Integrated Risk Assessment Within The Global Earthquake Model. 10th US National Conference on Earthquake Engineering. 

 

Burton, C., & Silva, V. (2014). Integrated Risk Modeling Within The Global Earthquake Model (Gem): Test Case Application For Portugal. 2nd European Conference on Earthquake Engineering and Seismology.

 

Cammalleri, C., Micali, F., Vogt, J. (2016). A novel soil moisture-based drought severity index (DSI) combining water deficit magnitude and frequency. Hydrol. Process. 30, 289-301. 

 

Cardona, O.D. 1986. Estudios de vulnerabilidad y evaluación del riesgo sísmico: Planificación física y urbana en áreas propensas. Asociación Colombiana de Ingeniería Sísmica. Reporte AIS-33. Diciembre 1986. Bogotá. Colombia. 

 

Cardona, O.D. (1989). Vulnerability Studies and Seismic Risk Assessment: Physical and Urban Planning in Earthquake-Prone Areas (in Spanish: Estudios de vulnerabilidad y evaluación del riesgo sísmico: Planificación física y urbana en áreas propensas). Colombian association of Earthquake Engineering (Asociación Colombiana de Ingeniería Sísmica). Report AIS-33. December 1989. 

 

Cardona, O.D. 2001. Evaluación holística del riesgo sísmico utilizando sistemas dinámicos complejos, Universidad Politécnica de Cataluña, Barcelona. Available at: https://www.tdx.cat/handle/10803/6219 

 

Cardona, O.D. (2004). The Need for Rethinking the Concepts of Vulnerability and Risk from a Holistic Perspective: A Necessary Review and Criticism for Effective Risk Management. In Mapping Vulnerability: Disasters, development and people (pp. 38–51). Earthscan publishers: London. 

 

Cardona, O.D. and Yamin, L.E. 1997. ‘Seismic Microzonation and Estimation of Earthquake Loss Scenarios: Integrated Risk Mitigation Project of Bogotá, Colombia’. Earthquake Spectra 13(4): 795–814. 

 

Cardona, O.D., Hurtado, J.E., Duque, G., Chardon, A.C., Velasquez, L.S., Prieto, S.D., Moreno, A., 2003a. The notion of disaster risk. Conceptual framework for integrated risk management. IDB/IDEA Program on Indicators for Disaster Risk Management. Universidad Nacional de Colombia, Manizales, Colombia. 

 

Cardona, O.D., Hurtado, J.E., Duque, G., Chardon, A.C., Velásquez, L.S, Prieto, S.D., Moreno, A., 2003b. Indicators for risk measurement: fundamentals for a methodological approach. IDB/IDEA Program on Indicators for Disaster Risk Management. Universidad Nacional de Colombia, Manizales, Colombia. 

 

Cardona, O.D., Hurtado, J.E., Duque, G., Moreno, A., Chardon, A.C., Velásquez, L.S. and Prieto, S.D. 2005. System of Indicators for Disaster Risk Management: Program for Latin America and the Caribbean: Main Technical Report, IDB/IDEA Program on Indicators for Disaster Risk Management. Available at: http://idea.bid.manizales.unal.edu.co/, Universidad Nacional de Colombia, Manizales, Colombia. 

 

Cardona, O.D., Ordaz, M.G., Mora, M., Salgado-Gálvez, M.A., Bernal, G.A., Zuloaga-Romero, D., Marulanda, M.C., Yamín, L., and González, D. 2014. Global risk assessment: a fully probabilistic seismic and tropical cyclone wind risk assessment. International Journal of Disaster Risk Reduction. 10:461-476. 

 

Carreño, M.L. (2006). Técnicas innovadoras para la evaluación del riesgo sísmico y su gestión en centros urbanos Acciones ex ante y ex post. In TDX (Tesis Doctorals en Xarxa). Universitat Politècnica de Catalunya. http://www.tdx.cat/handle/10803/6241 

 

Carreño, M.L, Cardona, O.D., and Barbat, A.H. 2004. Metodología para la evaluación del desempeño de la gestión del riesgo, CIMNE monograph IS-51, Technical University of Catalonia, Barcelona, Spain. 

 

Carreño, M.L, Cardona, O.D., and Barbat, A.H. 2007a. ‘Urban Seismic Risk Evaluation: A Holistic Approach’. Natural Hazards 40(1):137-172. Springer Netherlands. DOI 10.1007/s11069-006-0008-8. 

 

Carreño, M.L., Cardona, O.D., and Barbat, A.H. 2007b. ‘A Disaster Risk Management Performance Index’, Natural Hazards 41(1): 1-20. Springer Netherlands, DOI 10.1007/s11069-006-9008-y. 

 

Carreño, M.L., Lantada, N., and Jaramillo, N. 2018. ‘Fuzzy Inference System for Muti-hazard Physical Risk Assessment in Urban Areas’, Revista internacional de métodos numéricos para el cálculo y diseño ingeniería 34(1) DOI 10.23967/j.rimni.2017.7.001. Available at: URL https://www.scipedia.com/public/Carreno_et_al_2017a 

 

Cenci, L., Laiolo, P., Gabellani, S., Campo, L., Silvestro, F., Delogu, F., Boni, G., Rudari, R., Puca, S., Assimilation of H-SAF Soil Moisture Products for Flash Flood Early Warning Systems. Case Study: Mediterranean Catchments. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 9(12), pp. 5634-5646, DOI: 10.1109/JSTARS.2016.2598475, 2016 

 

Chen, J., Gao, M., Cheng, S. et al. (2022) Global 1 km × 1 km gridded revised real gross domestic product and electricity consumption during 1992–2019 based on calibrated nighttime light data. Sci Data 9, 202. https://doi.org/10.1038/s41597-022-01322-5 

Compass International Inc., 2012. Global construction cost and reference yearbook (2012). 

 

C3S: Near surface meteorological variables from 1979 to 2018 derived from bias-corrected reanalysis, CDS, https://doi.org/10.24381/cds.20d54e34, 2020 

 

Cornell, C.A. (1968). Engineering seismic risk analysis, Bulletin of the Seismological Society of America  58(5): 1583–1606. 

 

Corral, C., Berenguer, M., Sempere-Torres, D., Poletti, L., Silvestro, F. & Rebora, N. 2019 Comparison of two early warning systems for regional flash flood hazard forecasting.Journal of Hydrology 572, 603–619. https://doi.org/10.1016/j.jhydrol.2019.03.026

 

Curt, C. and Tacnet, J.M. 2018. Resilience of Critical Infrastructures: Review and Analysis of Current Approaches, Risk Analysis, Society of Risk Analysis. DOI: 10.1111/risa.13166 

 

Cutter, S.L. (editor). 1994. Environmental Risks and Hazards, Prentice Hall, New Jersey, USA. 

 

Daniell, J., Daniell, K., Daniell, T., & Khazai, B. (2010). A country level physical and community risk index in the Asia-Pacific region for earthquakes and floods, Paper No. 0392. 5th International Civil Engineering Conference in the Asian Region (CECAR). 

 

Data for Good (2022 ):Facebook Connectivity Lab and Center for International Earth Science Information Network - CIESIN - Columbia University. 2016. High Resolution Settlement Layer (HRSL). Source imagery for HRSL © 2016 DigitalGlobe. Data available at OCHA HDX 

 

Davidson, R. 1997. An Urban Earthquake Disaster Risk Index, The John A. Blume Earthquake Engineering Center, Department of Civil Engineering, Stanford University, Report No. 121, Stanford, USA. 

 

De Bono, A., Mora, M.G., (2014). A global exposure model for disaster risk assessment. Int. J. Disaster Risk Reduct. doi:10.1016/j.ijdrr.2014.05.008 

 

De Bono, A., Chatenoux, B. (2015). A Global Exposure Model for GAR 2015. GAR 2015 Background Papers for Global Risk Assessment 

 

Dianat, H., Wilkinson, S., Williams, P., Khatibi, H. 2022. Choosing a holistic urban resilience assessment tool, International Journal of Disaster Risk Reduction.  https://doi.org/10.1016/j.ijdrr.2022.102789 

 

Dilley M, Chen RS, Deichmann U, Lerner-Lam AL, Arnold M (2005). Natural disaster hotspots—a global risk analysis. Report International Bank for Reconstruction and Development/The World Bank and Columbia University, p 132. 

 

Derakhshan S, Emrich CT, Cutter SL 2022. Degree and direction of overlap between social vulnerability and community resilience measurements. PLoS ONE 17(10): e0275975. https://doi.org/10.1371/journal.pone.0275975 

 

Esch, Brzoska, Dech, Leutner, Palacios-Lopez, Metz-Marconcini, Marconcini, Roth, Zeidler (2022) World Settlement Footprint 3D - A first three-dimensional survey of the global building stock, Remote Sensing of Environment, Volume 270, 112877, ISSN 0034-4257, https://doi.org/10.1016/j.rse.2021.112877

 

ESDU - Engineering Science Data Unit (2002). Strong Winds in the Atmospheric Boundary Layer. Part 2: Discrete Gust Speeds. ESDU 83045. IHS Group. 

 

Esteva, L. (1967). Criterios para la construcción de espectros para diseño sísmico, Tercer Simposio Panamericano de Estructuras, Caracas, Universidad Central de Venezuela. 

 

FEMA. (2020). The National Risk Index. Available at: https://hazards.geoplatform.gov/portal/apps/MapSeries/index.html?appid=ddf915a24fb24dc8863eed96bc3345f8 

 

FEMA. 2022. Community Resilience Indicator Analysis: Commonly Used Indicators from Peer-Reviewed Research: Updated for Research Published 2003-2021. 

 

Folke, C. 2006. ‘Resilience: the Emergence of a Perspective for Social–ecological Systems Analyses’. Global Environmental Change 16(3): 253–267. 

 

Freire S., MacManus K., Pesaresi M., Doxsey-Whitfield E., Mills J. (2016): Development of new open and free multi-temporal global population grids at 250 m resolution. Geospatial Data in a Changing World; Association of Geographic Information Laboratories in Europe (AGILE), AGILE 2016 

 

Gravelin, M.H., Germain, D., 2022. Disaster Risk Resilience: Conceptual Evolution, Key Issues, and Opportunities. Int J Disaster Risk Sci, 13:330–341 https://doi.org/10.1007/s13753-022-00419-0 

 

Gillespie-Marthaler, L., Nelson, K.S., Baroud, H., Kosson, D.S. & Abkowitz, M. 2018. An integrative approach to conceptualizing sustainable resilience, Sustainable and Resilient Infrastructure, DOI: 10.1080/23789689.2018.1497880 

 

GCA, 2021. Climate-Resilient Infrastructure Officer Handbook: Knowledge Module on Public-Private Partnerships for Climate-Resilient Infrastructure. Global Center on Adaptation. 

 

Grossi, P. and Kunreuther, H. (2005). Catastrophe Modeling: A New Approach to Managing Risk. Springer Science and Business Media, p.p.252. ISBN: 0387231293, 9780387231297 

 

Hoekstra A.Y., Mekonnen, M.M., Chapagain, A.K, Mathews, R.E., Richter, B.D., 2012. Global monthly water scarcity: Blue water footprints versus blue water availability PLoS One 7. 

 

Holling, C. 1973. ‘Resilience and Stability of Ecological Systems’, Annual Review of Ecology, Evolution, and Systematics 4: 1–23. 

 

INGENIAR (2021). Risk Study on the Effects of Climate Change and Adaptation Measures for Colombia's Long-Term Strategy E2050 (in Spanish: Estudio de Riesgo por Efectos del Cambio Climático y Medidas de Adaptación para la Estrategia a Largo Plazo E2050 de Colombia). 

 

Jaedicke, C., Van Den Eeckhaut, M., Nadim, F. et al. (2014). Identification of landslide hazard and risk ‘hotspots’ in Europe. Bull Eng Geol Environ 73, 325–339. https://doi.org/10.1007/s10064-013-0541-0 Holland, G. (1980). An Analytic Model of the Wind and Pressure in Hurricanes. Monthly Weather Review, 108. American Meteorological Society. 

 

Jaimes, M., Reinoso, E. and Esteva, L. 2015 Risk Analysis for Structures Exposed to Several Multi-Hazard Sources. Journal of Earthquake Engineering, 19:2, 297-312, DOI: 10.1080/13632469.2014.962673 

 

Jaramillo, N. (2014). Evaluación holística del riesgo sísmico en zonas urbanas y estrategias para su mitigación : aplicación a la ciudad de Mérida-Venezuela. Universidad Politécnica de Cataluña. 

 

Jaramillo, N., Carreño, M.L. and Lantada, N. 2016. ‘Evaluation of the Social Context Integrated into the Study of Seismic Risk for Urban Areas’, International Journal of Disaster Risk Reduction 17:185-198. 

 

Jenkins, S. F., Magill C. R., McAneney J., and Blong R. James. 2012. Regional ash fall hazard I: A probabilistic assessment methodology. Bulletin of Volcanology. 74(7), 1699-1712. 

 

JRC, 2017.  Resilience. The 2nd International Workshop on Modelling of Physical, Economic and Social Systems for Resilience Assessment. Joint Research Center, Ispra, European Union, doi:10.2760/556714. 2018, doi:10.2760/727592 

 

Khazai, B., Bendimerad, F., Cardona, O.D., Carreño, M.L., Barbat, A.H., and Burton, C.G. (2015). A Guide to Measuring Urban Risk Resilience: Principles, Tools, and Practice of Urban Indicators. KIT, EMI, CAPRA, CIMNE, GEM. Available at: https://www.cedim.kit.edu/download/Guidebook_URR_ME-July-2015.pdf 

 

Kummu M., Gerten, D., Heinke, J., Konzmann, M., Varis, O., 2014. Climate-driven interannual variability of water scarcity in food production potential: A global analysis Hydrol. Earth Syst. Sci. 18 447–61. 

 

Lacambra, S. and Guerrero, R. 2017. IGOPP: Índice de Gobernabilidad y Políticas Públicas en Gestión del Riesgo de Desastres. Inter-American Development Bank. Available at: http://dx.doi.org/10.18235/0001095 

 

Laiolo, P., S. Gabellani, L. Campo, F. Silvestro, F. Delogu, R. Rudari, L. Pulvirenti, G. Boni, F. Fascetti, N. Pierdicca, R. Crapolicchio, S. Hasenauer, S. Puca: Impact of different satellite soil moisture products on the predictions of a continuous distributed hydrological model, International Journal of Applied Earth Observation and Geoinformation, Volume 48, 2016, Pages 131-145, ISSN 0303-2434, https://doi.org/10.1016/j.jag.2015.06.002

 

Marulanda, M.C., Cardona, O.D., & Barbat, A.H. (2009). Robustness of the holistic seismic risk evaluation in urban centers using the USRi. Natural Hazards, 49(3), 501–516. https://doi.org/10.1007/s11069-008-9301-z 

 

Marulanda, M.C., Carreño, M.L., Cardona, O.D., Ordaz, M.G., & Barbat, A.H. (2013). Probabilistic earthquake risk assessment using CAPRA: Application to the city of Barcelona, Spain. Natural Hazards, 69(1), 59–84. https://doi.org/10.1007/s11069-013-0685-z 

 

Marulanda, M.C., Cardona, O.D., Marulanda, P., Carreño, M.L., & Barbat, A. H. (2020). Evaluating risk from a holistic perspective to improve resilience: The United Nations evaluation at global level. Safety Science, 127. https://doi.org/10.1016/j.ssci.2020.104739 

 

Marulanda-Fraume, P., Cardona, O.D., Marulanda, M.C., and Carreño, M.L. 2022. Unveiling the Latent Disasters from a Holistic and Probabilistic View: Development of a National Risk Atlas. In: Disaster Risk Reduction for ­Resilience. Disaster Economic Vulnerability and Recovery Programs, Eslamian, S. and Eslamian, F. (eds). 313-336, Springer. https://link.springer.com/book/10.1007/978-3-031-08325-9 

 

Meteor (2022) Level 1 Exposure for Africa, Arabian Peninsula, continental Asia, Pacific region, available at METEOR Explorer (include ‘Copyright (C) 2020 ImageCat Inc. and METEOR Project Consortium.’)

 

Muir-Wood, R. (2016). The cure for catastrophe : how we can stop manufacturing natural disasters. Basic Books: London. 

 

Mora, S. and Vahrson, W. (1994). Macrozonation methodology for landslide hazard determination. Bulletin of the Association of Engineering Geologists, Vol 31, No. 1, 49-58. 

 

Nadim, F, Kjekstad, O, Peduzzi, P, Herold, C, Jaedicke, C (2006). Global landslide and avalanche hotspots. Landslides, Vol. 3, No. 2, 159-174. 

 

Nadim F., Jaedicke C., Smebye H., Kalsnes B. (2013). Assessment of Global Landslide Hazard Hotspots. In: Sassa K., Rouhban B., Briceño S., McSaveney M., He B. (eds) Landslides: Global Risk Preparedness. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22087-6_4 

 

Niño, M., Jaimes, M., Reinoso, E. 2015. Seismic-event-based methodology to obtain earthquake induced translational landslide regional hazard maps. Natural Hazards, Springer Ed. DOI: 10.1007/s11069-014-1163-y 

 

Oliver-Smith, A. (2004). Theorizing Vulnerability in a Globalized World: A Political Ecological Perspective. In G. Bankoff, G. Frerks, & D. Hilhorst (Eds.), Mapping Vulnerability: Disasters, development and people (pp. 10–24). 

 

Ordaz, M. (2000). Methodology for Seismic Risk Assessment Focused on Earthquake Insurance Management (in Spanish: Metodología para la evaluación del riesgo sísmico enfocada a la gerencia de seguros por terremoto). National Autonomous University of Mexico (Universidad Nacional Autónoma de México). Mexico D.F., Mexico. 

 

Pastor, A.V., Ludwig, F., Biemans, H., Hoff, H., Kabat, P., 2014. Accounting for environmental flow requirements in global water assessments Hydrol. Earth Syst. Sci. 18 5041–59. 

 

Paul et al., (2022): Development of a uniform exposure model for the African continent for use in disaster risk assessment. International Journal of Disaster Risk Reduction, Volume 71, 102823, ISSN 2212-4209 

 

Poletti, M. L., F. Silvestro, S. Davolio, F. Pignone, and N. Rebora (2019) Using nowcasting technique and data assimilation in a meteorological model to improve very short range hydrological forecasts 

 

Puente, S. 1999. ‘Social Vulnerability to Disasters in Mexico City: An Assessment Method’ in Crucibles of Hazard: Mega-Cities and Disasters in Transition, edited by J. K. Mitchell, United Nations University Press, New York, USA. 

 

Quijano, J. A., Jaimes, M. A., Torres, M. A., Reinoso, E., Castellanos, L., Escamilla, J., and Ordaz, M. 2014. Event-based approach for probabilistic agricultural drought risk assessment under rainfed conditions, J. Int. Soc. Prev. Mitig. Nat. Hazards, 76, 1297-1318, doi:10.1007/s11069-014-1550-4. 

 

Rød, B., Lange, D., Theocharidou, M., and Pursiainen C. 2020. From Risk Management to Resilience Management in Critical Infrastructure, Journal of Management in Engineering, 36(4), ASCE, ISSN 0742-597X 

 

Salgado-Gálvez M.A., Zuloaga D., Bernal G., Mora M.G. and Cardona O.D. 2014. Fully probabilistic seismic risk assessment considering local site effects for the portfolio of buildings in Medellín, Colombia. Bulletin of Earthquake Engineering. 12:671-695.

 

Salgado-Gálvez M.A., Cardona O.D., Carreño M.L. and Barbat A.H. (2015). Probabilistic seismic hazard and risk assessment in Spain. Monographs on earthquake engineering. International Center for Numerical Methods in Engineering – CIMNE. ISBN: 978-84-993307-7-3. 

 

Salgado-Gálvez, M.A., Zuloaga, D., Velásquez, C.A., Carreño, M.L., Cardona, O.D., & Barbat, A.H. (2016). Urban seismic risk index for Medellín, Colombia, based on probabilistic loss and casualties estimations. Natural Hazards, 80(3), 1995–2021. https://doi.org/10.1007/s11069-015-2056-4 

 

Salgado-Gálvez, M., Bernal G., Zuloaga, D., Marulanda, M., Cardona, O. D., Henao, S. 2017. Probabilistic Seismic Risk Assessment in Manizales, Colombia: Quantifying Losses for Insurance Purposes. Int J Disaster Risk Sci. DOI 10.1007/s13753-017-0137-6 

 

Satterthwaite, D., Owen, D.L., (2006). Outside the large cities: the demographic importance of small urban centres and large villages in Africa, Asia and Latin America. IIED, London. 

 

Shukla, S. H., & Wood, A. W. (2008). Use of a standardized runoff index for characterizing hydrologic drought. Geophysical Research Letters, 35(2), 41–46. 

 

Silvestro, F., Gabellani, S., Delogu, F., Rudari, R., and Boni, G., Exploiting remote sensing land surface temperature in distributed hydrological modelling: the example of the Continuum model, Hydrol. Earth Syst. Sci., 17, 39-62, doi:10.5194/hess-17-39-2013, 2013. 

 

Silvestro, F., Gabellani, S., Rudari, R., Delogu, F., Laiolo, P., and Boni, G.: Uncertainty reduction and parameter estimation of a distributed hydrological model with ground and remote-sensing data, Hydrol. Earth Syst. Sci., 19, 1727-1751, doi:10.5194/hess-19-1727-2015, 2015. //www.hydrol-earth-syst-sci.net/19/1727/2015/hess-19-1727-2015.html 

 

Sparks, P.R., Huang, Z. (1999). Wind Speed Characteristics in Tropical Cyclones. In: Proceedings of 10th International Conference on Wind Engineering, Copenhagen, pp.343–350. 

 

Tilburg C. E. & Garvine R. W. (2003). Three-Dimensional Flow in a Shallow Coastal Upwelling Zone: Alongshore Convergence and Divergence on the New Jersey Shelf. Journal of Physical Oceanography. 33, 2003. 

 

Tolis, S, Rosset, P., Wyss, M. (2013) Tolis, S, Rosset, P., Wyss, M. 2013. Detailed Building Stock at Regional Scale in Three Size Categories of Settlements for 18 Countries Worldwide. WAPMERR. GAR 2015 report 

 

Tucker, B.E., Erdik, M.Ö, Hwang, C.N. (editors). 1994. Issues in Urban Earthquake Risk, Springer, Dordrecht, The Netherlands. 

 

UNDP (2004). A Global Report: Reducing Disaster Risk a Challenge for Development. United Nations Development Program, Disaster Risk Index DRI, Geneva, Switzerland. Available at: https://www.undp.org/content/undp/en/home/librarypage/crisis-prevention-and-recovery/reducing-disaster-risk--a-challenge-for-development.html 

 

UNDRR (2017). The GAR Atlas: Unveiling global disaster risk. Available at: https://www.preventionweb.net/english/hyogo/gar/atlas/ 

 

UNGRD, Cardona, O.D., Bernal G., Marulanda, P., Villegas, C., González, D., Escovar, M.A., Carreño, M.L., & Marulanda, M.C. (2018). Atlas de riesgo de Colombia: Revelando los desastres latentes. Available at: https://repositorio.gestiondelriesgo.gov.co/handle/20.500.11762/27179 

 

Vickery, P.J., Skerlj, P.F. (2005). Hurricane Gust Factors Revisited. J. Struct. Eng. 131, 828–832. 

 

Vickery, P.J., Wadhera, D. (2008). Statistical Models of Holland Pressure Profile Parameter and Radius to Maximum Winds of Hurricanes from Flight-Level Pressure and H*Wind Data. Journal of Applied Meteorology and Climatology. American Meteorological Society, 

 

Vickery, P.J., Masters, F.J., Powell, M.D, Wadhera, D. (2009a). Hurricane Hazard Modeling: The Past, Present, and Future. J. Wind Eng. Ind. Aerodyn. 97 (2009) 392–405. 

 

Vickery, P.J., Wadhera, D., Powell, M.D., Chen, Y. (2009b). A Hurricane Boundary Layer and Wind Field Model for Use in Engineering Applications. Journal of Applied Meteorology and Climatology. American Meteorological Society. 

 

Wang Y, Chen X, Borthwick AGL, Li T, Liu H, Yang S, Zheng C, Xu J, Ni J. Sustainability of global Golden Inland Waterways. Nat Commun. 2020 Mar 25;11(1):1553. doi: 10.1038/s41467-020-15354-1. PMID: 32214097; PMCID: PMC7096509. 

 

WMO. (2010). Guidelines for Converting Between Various Wind Averaging Periods in Tropical Cyclone Conditions. B. A. Harper, J. D. Kepert and J. D. Ginger. World Meteorological Organization, 2010World Meteorological Organization, 2012: Standardized Precipitation Index User Guide (WMO-No. 1090), Geneva. 

 

World Meteorological Organization (WMO) and Global Water Partnership (GWP), 2016: Handbook of Drought Indicators and Indices (M. Svoboda and B.A. Fuchs). Integrated Drought Management Programme (IDMP), Integrated Drought Management Tools and Guidelines Series 2. Geneva 

 

Wong, I. G. 2014. How big, how bad, how often: Are extreme events accounted for in modern seismic hazard analysis? Nat. Hazards 72, no. 3, 1299–1309, DOI: 10.1007/s11069-013-0598-x 

 

World Bank. 2004. Identification of Global Natural Disaster Risk Hotspots, Center for Hazard and Risk Research at University of Columbia, Washington, USA. 

 

World Bank (2021). The Changing Wealth of Nations 2021 : Managing Assets for the Future. Washington, DC: World Bank. © World Bank. https://openknowledge.worldbank.org/handle/10986/36400 License: CC BY 3.0 IGO 

 

Yevjevich, V., 1967. An objective approach to definitions and investigations of continental hydrological droughts. Colourado State University, Fort Collins, Hydrology Paper 23. 

 

Zuzak, C., Mowrer, M., Goodenough, E., Burns, J. Ranalli, N., Rozelle, J. 2022. The national risk index: establishing a nationwide baseline for natural hazard risk in the US, Natural Hazards, https://doi.org/10.1007/s11069 

 

Zelenhasić, E., Salvai, A., 1987. A method of streamflow drought analysis. Water Resour. Res., 23(1), 156-168.